Counting Generators of Normal Integral Bases

نویسنده

  • G. R. Everest
چکیده

We present a very accurate formula counting norms of normal integral bases in tame abelian extensions of the rational eld. The methods used include applications of Schmidt's Subspace Theorem, Baker's Theorem and the Hardy-Littlewood Method, all from diophantine approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power integral bases in sextic fields with a cubic subfield

In the present paper we give an algorithm to compute generators of power integral bases having ”small” coordinates in an integral basis in sextic fields containing a cubic subfield. As an application of the method, we give a sufficient condition for infinite parametric families of number fields of this type to have power integral basis. To illustrate the statement we construct parametric famili...

متن کامل

Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields

Let F/E be a finite Galois extension of fields with abelian Galois group Γ. A self-dual normal basis for F/E is a normal basis with the additional property that TrF/E(g(x), h(x)) = δg,h for g, h ∈ Γ. Bayer-Fluckiger and Lenstra have shown that when char(E) 6= 2, then F admits a self-dual normal basis if and only if [F : E] is odd. If F/E is an extension of finite fields and char(E) = 2, then F ...

متن کامل

Index form equations in quintic fields

The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for p...

متن کامل

A note on the distribution of self-dual normal bases generators of finite fields under trace map

Let Fqn be an extension of the field Fq of degree n = mpl , l ≥ 1 where p is the characteristic of the field Fq . It is proved that the number of self-dual normal bases generators of Fqn over Fq in (TrFqn |Fqm ) −1(β), for any self-dual normal basis generator β of Fqm over Fq , is independent of the choice of β.

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007